Answer:
Organisms inhabit nearly every environment on Earth, from hot vents deep in the ocean floor to the icy reaches of the Arctic. Each environment offers both resources and constraints that shape the appearance of the species that inhabit it, and the strategies these species use to survive and reproduce. Some of the broadest patterns of environmental difference arise from the way our planet orbits the Sun and the resulting global distribution of sunlight (Chapin et al. 2002).
Explanation:
In the tropics, where solar radiation is plentiful year-round, temperatures are warm, and plants may photosynthesize continuously as long as water and nutrients are available. In polar regions, where solar radiation is seasonally limited, mean temperatures are much lower, and organisms must cope with extended periods when photosynthesis ceases.
Answer:
pH reducing agent for acidic soils
Explanation:
Gypsum is not used to reduce soil pH because it will displace the soil H+ but there's no means of extracting the H from the soil. So the pH of the soil remains the same.
Yes it is but I have to check so wait
Answer: B) metals, non-metals, metalloids
An example of a metal is iron. A non-metal example is oxygen, which is a gas at STP (standard temperature and pressure).
A metalloid is a bit of a mix between a metal and non-metal element. It's sorta like an element that has both properties of metals and non-metals, or it's in a murky gray area. An example of a metalloid would be silicon.
AgF consists of Ag+ and F- ions, which are fully dissociated in aqueous solution. When solving electrolysis problems, it is important to remember that water itself may also be a subject to electrolysis. Therefore, determining which species is oxidized and which species is reduced depends on selecting the processes that are the most energetically favorable. The most preferred reduction reaction will be Ag+ + e- = Ag (Emf=0.7996 V) which will occur at the cathode, on the other hand, the most favorable oxidation reaction will be
2H2O = O2 +4H+ + 4e- (Emf = -1.3 V) that will occur at the anode. Thus, the product at the anode is oxygen gas and at the cathode electrode is silver metal.