Answer:
Option b. is correct.
Explanation:
In the given question a parachutist is falling toward the ground .
Also, the downward force of gravity is exactly equal to the upward force of air resistance.
So, net force applied to the parachutist is equal to zero ( because both force acts in opposite direction ).
Now by first law of motion :
An object will be in rest or in constant speed unless and until no external force is applied on it .
So, in the question the velocity of the parachutist is not changing with time.
Therefore, option b. is correct.
Hence, this is the required solution.
Answer:
The change in momentum = -20000 kg m/s.
Explanation:
Mass m = 1000 kg
speed v₁ = 20 m/s
speed v₂ = 0 m/s
We know that,
The change in momentum
ΔP = m (Δv)
ΔP = m (v₂ - v₁)
= 1000 (0 - 20)
= 1000 (-20)
= -20000 kg m/s
Thus, the change in momentum = -20000 kg m/s.
Note: negative sign indicates that the velocity is reducing when it hits the barrier.
Answer:
it's zero
Explanation:
it is there is your answer
Where r is the radius of balloon.
Here mass of woman = 68 kg
Mass of air displaced by a balloon with volume V = 1.29*V
Mass of helium inside balloon = 0.178*V
Total mass to be lifted by balloon = 68 +0.178*V
Buoyant force = 1.29V-0.178V=1.112V
So we have 1.112 V = 68+ 0.178*V
0.934 V = 68
V = 72.81
\frac{4}{3} \pi r^{3}[/tex]= 72.81
r = 2.59 m
So radius of helium balloon = 2.59 m