Answer: f = 4 Hz i think
Explanation:
sorry i dont rember (cant type lol)
Answer:2m
Explanation:
Wavelength=velocity/frequency
Wavelength=4/2=2m
Answer:
Q must be placed at 0.53 L
Explanation:
Given data:
q_1 = 4.0 μC , q_2 = 3.0μC
Distance between charge is L
third charge q be placed at distance x cm from q1
The force by charge q_1 due to q is
----1
The force by charge q_2 due to q is
--2
we know that net electric force is equal to zero
F_1 = F_2
x = 0.53 L
Q must be placed at 0.53 L
The range of force exerted at the end of the rope is 285.7 N to 1,000 N.
<h3>Net horizontal force of the cylinder</h3>
The net horizontal force of the cylinder when it is at equilibrium position is determined by applying Newton's second law of motion.
∑F = 0
F - μFn = 0
F - 0.2(5,000) = 0
F - 1,000 = 0
F = 1,000 N
The strength of the applied force increases as the number of turns of the rope increases.
minimum force = total force/number of turns of rope
minimum force = 1,000/3.5
minimum force = 285.7 N
Thus, the range of force exerted at the end of the rope is 285.7 N to 1,000 N.
Learn more about Newton's second law of motion here: brainly.com/question/3999427