This statement is true. The greater the mass is in an object, it is indeed the higher resistance to a change in movement the object will have. That only mean that the mass of an object and its resistance to change of movement is directly proportional.
Answer:
The model, called the kinetic theory of gases, assumes that the molecules are very small relative to the distance between molecules. ... The molecules are in constant random motion, and there is an energy (mass x square of the velocity) associated with that motion. The higher the temperature, the greater the motion.
The relationship between math and science is very complicated, yet at the same time very simple. In fact all scientific equations are expressed into some form of mathematical equations. Science is a body of knowledge about the Universe. Mathematics is a language that can describe relationships and change in relationships in a rational way. Science generally uses mathematics as a tool to describe science and vice versa.
Answer: The velocity at different marked time points are given as
t1 = -
t2 = +
t3 = +
t4 = -
t5 = 0
Explanation:
The slope of the tangent of the curve indicates the instantaneous velocity. So if the slope of the tangent is positive, that Is, the tangent makes a positive angle (above the horizontal axis) with the horizontal
axis, then the velocity at this point is positive, and if the slope of the tangent is negative, that is the tangent makes a negative angle with the horizontal axis (below the horizontal axis), then the velocity at this point is negative.
When the tangent of the line is parallel to the horizontal axis, the velocity is 0.
From the position-time graph attached, the sign on the instantaneous velocity for each time marked on the graph is given below
t1 = -
t2 = +
t3 = +
t4 = -
t5 = 0
QED!