Answer:
60 tiles left over
Step-by-step explanation:
the lobby needs 30 x 8 = 240 tiles.
she has 6 x 50 = 300 tiles
300 - 240 = 60 left over
You have to make a cos graph that starts its minimum and of -2, has an amplitude of 10, a period of 10 and a maximum of 18.
I decided to use a cos graph since cos graphs start at their minimum or maximum unlike a sine graph that starts halfway between the minimum and maximum. You also know the amplitude has to be 10 since 18+2=20 and 20/2=10. We were also told that the water wheel completels a rotation every 10 minutes which means the period is 10 minutes.
lets start of with a regular cos(x) graph. This starts on its maximum instead of minimum so we have to multiply it by -1 to get -cos(x) which does start on its minimum.
-cos(x) has an amplitude of 1 instead of 10, to fix that we multiply it by 10 to get -10cos(x) which has an amplitude of 10.
-10cos(x) has a period of 2π instead of 10, to fix this we multiply the x by 2π/10 to get -10cos((π/5)x) which now has a period of 10.
-10cos((π/5)x) has a minimum of -10 and maximum of 10 instead of a minimum of -2 and maximum of 18, to fix this we add 8 to -10cos((π/5)x) to get -10cos((π/5)x)+8 which does have a minimum of -2 and maximum of 18.
Therefore the answer is y=-10cos((π/5)x)+8. x being time in minutes and and y being the height in feet.
I hope this helps. Let me know if anything is unclear.
Answer:
ans=13.59%
Step-by-step explanation:
The 68-95-99.7 rule states that, when X is an observation from a random bell-shaped (normally distributed) value with mean and standard deviation , we have these following probabilities
In our problem, we have that:
The distribution of the number of months in service for the fleet of cars is bell-shaped and has a mean of 53 months and a standard deviation of 11 months
So
So:
-----------
-----
What is the approximate percentage of cars that remain in service between 64 and 75 months?
Between 64 and 75 minutes is between one and two standard deviations above the mean.
We have subtracted by is the percentage of cars that remain in service between one and two standard deviation, both above and below the mean.
To find just the percentage above the mean, we divide this value by 2
So:
The approximate percentage of cars that remain in service between 64 and 75 months is 13.59%.
Answer:
the answer is d the person above is wrong.
Step-by-step explanation of the wrong answers: b is wrong because it will be 3,3,3,3,3,3,3,4,4,4,5,5,5,6,6. A is wrong because 3 isn't in the middle. C is wrong because then 6-2 is 4. There's your explanation.
Answer:
15/1, 90/6
Step-by-step explanation:
45/3 = 15
Anything not equal to 15 is not a solution
90/10 = 9
90/6 = 15
15/1 = 15
135/6 = 22.5
30/1 = 30