Temperature affects spermatogenesis, which functions best at body temperatures just a little lower than those.
<h3>Abstract:</h3>
To keep testicular temperatures below those of the body core, adequate thermoregulation is essential. The process of mammalian spermatogenesis and the resulting spermatozoa are negatively impacted by elevated testicular temperature. Therefore, sperm quality can be affected and the likelihood of infertility is increased by thermoregulatory dysfunction resulting in heat stress. This article reviews a variety of internal and external factors that may lead to testicular heat stress. We go into more detail on how heat stress affects the spermatogenesis process, the resulting epididymal spermatozoa, germ cells, and the alterations that result in the testis.
We also go over the chemical reactions of germ cells to heat exposure and potential processes, such as apoptosis, DNA damage, and autophagy, that could lead to heat-induced germ cell damage. Further explanation is provided for the intrinsic and extrinsic processes involved in the complex mechanism of germ cell death. These intricate apoptotic pathways ultimately result in the demise of germ cells.
Learn more about spermatogenesis here:
brainly.com/question/1594056
#SPJ4
Answer:
A. Biodiversity will decrease .
Explanation:
- The loss of a keystone species can cause extinction or mass destruction of other species that are dependent on it because keystone species are those species which significantly influence the existence and survival of other species in an ecosystem
- Since, beavers are considered as the keystone species, their removal from the ecosystem will cause loss of many other species in the ecosystem resulting in Decrease in the biodiversity of that ecosystem.
Answer:
yes, it could be something that's old or something rats cant eat/drink
Explanation:
Answer:
There are 4 main types of skin cancer:
Basal cell carcinoma. Basal cells are the round cells found in the lower epidermis. ...
Squamous cell carcinoma. Most of the epidermis is made up of flat, scale-like cells called squamous cells. ...
Merkel cell cancer. ...
Melanoma.
Explanation:
Answer:
The options
a. New combinations of genes yielding genotypes of greater fitness
b. Few heterozygotes because of underdominance
c. Frequency-dependent selection, leading to fluctuations in fitness
d. Heterozygotes with greater fitness, owing to overdominance
e. A random assortment of genotypes because of genetic drift
The CORRECT ANSWER IS b.
b. Few heterozygotes because of under dominance
Explanation:
In genetics, underdominance (at times called "negative overdominance") is the opposite of overdominance.
It is the selection against the heterozygote, that leads to disruptive selection and divergent genotypes. It occurs in cases of inferior and reduced fitness (As in our case study, it is the different chromosomal fusions and inversions)
of the heterozygotic genotype to the dominant or recessive homozygotic genotype. It is unstable as it causes fixation of either allele.
Another example is the African butterfly species Pseudacraea eurytus, which makes use of Batesian mimicry to avoid predation. This species carries two alleles that gives a coloration that is alike to a different local butterfly species that is harmful to its predator. The butterflies who are heterozygous for this trait are observed to be intermediate in coloration and thus encounter an higher risk of predation and a decrease in the total fitness.