Answer:
In liquids, particles are quite close together and move with random motion throughout the container. Particles move rapidly in all directions but collide with each other more frequently than in gases due to shorter distances between particles.
The answer for that is 16, math right?
Answer:
1. 8.7moles of H2
2. 2.25moles of O2
Explanation:
1. 2NH3 —> N2 + 3H2
From the equation,
2moles of NH3 produce 3 moles of H2.
Therefore, 5.8moles of NH3 will produce Xmol of H2 i.e
Xmol of H2 = (5.8x3)/2 = 8.7moles
2. C3H8 + 5O2 —> 3CO2 + 4H2O
From the equation,
5moles of O2 produced 4moles of H2O.
Therefore, Xmol of O2 will produce 1.8mol of H2O i.e
Xmol of O2 = (5x1.8)/4 = 2.25moles
Answer:
Most viscous to least viscous:
Explanation:
For hydrocarbons, viscosity increases with increasing molar mass. Because increasing molar mass signifies increase in number of electrons in molecules.
We know that in non-polar hydrocarbons, only van der waal intermolecular force exists. Van der waal force is proportional to number of electrons in a molecule.
Therefore with increasing molar mass, van der waal force increases. hence molecules gets more tightly bind with each other resulting increase in viscosity.
Here molar mass order :
Therefore viscosity order :
Quantitative measurements are numerical values, they involve amounts and units like measuring things. Qualitative observations appeal to the five senses, like what does the interaction look and sound like