Answer:
P = 2439.5 W = 2.439 KW
Explanation:
First, we will find the mass of the water:
Mass = (Density)(Volume)
Mass = m = (1 kg/L)(10 L)
m = 10 kg
Now, we will find the energy required to heat the water between given temperature limits:
E = mCΔT
where,
E = energy = ?
C = specific heat capacity of water = 4182 J/kg.°C
ΔT = change in temperature = 95°C - 25°C = 70°C
Therefore,
E = (10 kg)(4182 J/kg.°C)(70°C)
E = 2.927 x 10⁶ J
Now, the power required will be:
where,
t = time = (20 min)(60 s/1 min) = 1200 s
Therefore,
<u>P = 2439.5 W = 2.439 KW</u>
Answer:
a) 0.147 N
b) 9.408 N
c) 9.261 N
Explanation:
The tension on the cord is the only force keeping the block in circular motion, thus representing the entirety of its centripetal force . Plugging in values for initial and final states and we get answers for a and b. The work done by the person causes the centripetal force to increase, and thus is the difference between the final tension and the initial tension.
Answer:
9.82 × Hz
Explanation:
De Broglie equation is used to determine the wavelength of a particle (e.g electron) in motion. It is given as:
λ =
where: λ is the required wavelength of the moving electron, h is the Planck's constant, m is the mass of the particle, v is its speed.
Given that: h = 6.63 × Js, m = 2.50 kg, v = 2.70 m/s, the wavelength, λ, can be determined as follows;
λ =
=
=
= 9.8222 ×
The wavelength of the object is 9.82 × Hz.
Impulse is a force acting briefly on a body and producing a finite change of momentum.
This relates to momentum because impulse is a change in momentum. Impulse = momentum. Since force is a vector quantity, impulse is also a vector in the same direction. Impulse applied to an object produces equivalent vector change in its linear momentum, also in the same direction. m•(triangle)v
Answer:
Explanation:
Time taken by stone to cover horizontal distance
where t is time, h is height of whirling the stone in horizontal circle, g is gravitational constant, Substituting h for 2.1 m and g for 9.81
= 0.654654 seconds
t=0.65 s
Velocity, v= distance/time
v=10/0.65= 15.27525 m/s
v=15.3 m/s
where r is radius of circle, substituting r with 1.1m
Therefore, centripetal acceleration is