Question is incomplete and image is not attached ti the question. The required image is attached below, so the complete question is:
The diagram shows a device that uses radio waves.
What is the role of the part in the diagram labeled Y?
- modulate, amplify, and send out waves
- capture, amplify, and demodulate waves
- change the amplitude and frequency of waves
- change the pulse and phase of waves
Answer:
2. capture, amplify, and demodulate waves
Explanation:
The part Y labeled in the diagram refers to radio receiver which capture, amplify and demodulate the radio waves.
The radio receiver seperates required radio frequency signals through antenna and consist of an amplifier that amplify or increase the power of receiving signal. At the end, demodulators present in receivers recover the information from the modulated wave.
Hence, the correct option is 2.
Answer:
9.6 m
Explanation:
This is a case of motion under variable acceleration . So no law of motion formula will be applicable here. We shall have to integrate the given equation .
a = 3.6 t + 5.6
d²x / dt² = 3.6 t + 5.6
Integrating on both sides
dx /dt = 3.6 t² / 2 + 5.6 t + c
where c is a constant.
dx /dt = 1.8 t² + 5.6 t + c
when t = 0 , velocity dx /dt is zero
Putting these values in the equation above
0 = 0 +0 + c
c = 0
dx /dt = 1.8 t² + 5.6 t
Again integrating on both sides
x = 1.8 t³ / 3 + 5.6 x t² /2 + c₁
x = 0.6 t³ + 2.8 t² + c₁
when t =0, x = 0
c₁ = 0
x = 0.6 t³ + 2.8 t²
when t = 1.6
x = .6 x 1.6³ + 2.8 x 1.6²
= 2.4576 + 7.168
= 9.6256
9.6 m
Answer:
Metal is a tougher material to cut though, so the blades must be shorter to create more pressure to break through the metal. Paper on the other hand is easier to cut through so the blades can be longer in order to cut more in each snip.
Given Information:
Diameter of spherical cell = 0.040 mm
thickness = L = 9 nm
Resistivity = ρ = 3.6×10⁷ Ω⋅m
Dielectric constant = k = 9.0
Required Information:
time constant = τ = ?
Answer:
time constant = 2.87×10⁻³ seconds
Explanation:
The time constant is given by
τ = RC
Where R is the resistance and C is the capacitance.
We know that resistivity of of any material is given by
ρ = RA/L
R = ρL/A
Where area of spherical cell is given by
A = 4πr²
A = 4π(d/2)²
A = 4π(0.040×10⁻³/2)²
A = 5.026×10⁻⁹ m²
The resistance becomes
R = (3.6×10⁷*9×10⁻⁹)/5.026×10⁻⁹
R = 6.45×10⁷ Ω
The capacitance of the cell membrane is given by
C = kεoA/L
Where k = 9 is the dielectric constant and εo = 8.854×10⁻¹² F/m
C = (9*8.854×10⁻¹²*5.026×10⁻⁹)/9×10⁻⁹
C = 44.5 pF
C = 44.5×10⁻¹² F
Therefore, the time constant is
τ = RC
τ = 6.45×10⁷*44.5×10⁻¹²
τ = 2.87×10⁻³ seconds