Bacteria in soil feeds on dead organisms.
Answer:
B. 100 percent white
Explanation:
According to Mendel's law of dominance, the dominant allele of a gene masks the expression of the recessive allele in a heterozygous state. Therefore, when two pure breeding plants that differ with respect to one genetic trait are crossed, the progeny expresses only the dominant phenotype. Here, one allele should be completely dominant over the other. The allele for the white flowers is completely dominant over the allele for the blue flowers.
Let' assume that the allele "W" imparts white color to the flowers while the allele "w" gives blue color. When a true-breeding blue-flowered plant (ww) is crossed with a true-breeding white-flowered plant (WW), the progeny would be heterozygous for the dominant allele "W" and would exhibit "white color of flowers" (the dominant trait).
WW (white-flowered plant) x ww (blue-flowered plant) = Ww (white-flowered plant)
Answer:
False
Explanation:
algae is counted as a plant which means they are also asexual
Answer:
50%
Explanation:
According to the given information, the allele for the red-green colorblindness is inherited in an X linked recessive manner. Let's assume that the allele X^c is responsible for red-green colorblindness. The woman is normal but had a colorblind father (X^cY). Fathers give their X chromosomes to the daughters while their Y chromosome is transmitted to their sons. The sons get their X chromosomes from the mother.
The colorblind father has transmitted the X-linked allele for the red-green colorblindness to his daughter. Therefore, the genotype of the woman is X^cX. The woman would produce two types of eggs: 50 % with X^C and 50% with X. Therefore, 50% of sons of this woman would get X linked allele for the red-green colorblindness and would be affected by the disorder while the rest 50% of her sons will be normal.