If you mean what group of elements react the most, the answer is the alkali metals and the halogens because they both only either need to gain or lose one electron. If you mean the most reactive element, it would be fluorine because it has the most electronegativity.
Hydrogen gas is produced when dilute hydrochloric acid is added to a reactive metal.
Balanced molecular equation of sodim metal with hydrochloric acid:
2Na(s) + 2HCl(aq) → 2NaCl(aq) + H₂(g).
Ionic equation: 2Na(s) + 2H⁺(aq) + 2Cl⁻(aq) → 2Na⁺ + 2Cl⁻(aq) + H₂(g).
Net ionic equation: 2Na(s) + 2H⁺(aq) → 2Na⁺(aq) + H₂(g).
Sodium is oxidized from oxidation number 0 (Na) to oxidation number +1, hydrogen is reduced from oxidation number +1 to oxidation number 0 (hydrogen gas H₂).
Another example:
Balanced chemical equation: Zn(s) + 2HCl(aq) → ZnCl₂(aq) + H₂(g)
Word equation: zinc + hydrochloric acid → zinc chloride + hydrogen gas
More about hydrogen gas:brainly.com/question/24433860
#SPJ4
Answer:
color is there right answer for this question please make me a brainliest and follow me please please please please
Suppose 110.0 mL of hydrogen gas at STP combines with a stoichiometric amount of fluorine gas and the resulting hydrogen fluoride dissolves in water to form 150.0 mL of an aqueous solution. 0.032 M is the concentration of the resulting hydrofluoric acid.
<h3>What is Balanced Chemical Equation ?</h3>
The balanced chemical equation is the equation in which the number of atoms on the reactant side is equal to the number of atoms on the product side in an equation.
Now write the balanced chemical equation
H₂ + F₂ → 2HF
<h3>What is Ideal Gas ?</h3>
An ideal gas is a gas that obey gas laws at all temperature and pressure conditions. It have velocity and mass but do not have volume. Ideal gas is also called perfect gas. Ideal gas is a hypothetical gas.
It is expressed as:
PV = nRT
where,
P = Pressure
V = Volume
n = number of moles
R = Ideal gas constant
T = temperature
Here,
P = 1 atm [At STP]
V = 110 ml = 0.11 L
T = 273 K [At STP]
R = 0.0821 [Ideal gas constant]
Now put the values in above expression
PV = nRT
1 atm × 0.11 L = n × 0.0821 L.atm/ K. mol × 273 K
n = 0.0049 mol
<h3>How to find the concentration of resulting solution ? </h3>
To calculate the concentration of resulting solution use the expression
= 0.032 M
Thus from the above conclusion we can say that Suppose 110.0 mL of hydrogen gas at STP combines with a stoichiometric amount of fluorine gas and the resulting hydrogen fluoride dissolves in water to form 150.0 mL of an aqueous solution. 0.032 M is the concentration of the resulting hydrofluoric acid.
Learn more about the Ideal Gas here: brainly.com/question/25290815
#SPJ4