Answer:
0.426 volts
Explanation:
It is given that,
The radius of a circular loop, r = 11.2 cm = 0.112 m
An elastic conducting material is stretched into a circular loop.
It is placed with its plane perpendicular to a uniform 0.880 T magnetic field.
The radius of the loop starts to shrink at an instantaneous rate of 68.8 cm/s, dr/dt = 0.688 m/s
We need to find the emf induced in the loop at that instant.
So, the magnitude of induced emf is 0.426 volts.
it is the point at infinity where it is at a distance from the curve equal to the radius of curvature lying on the normal vector. Sorry no diagram
Answer: Speed = 4 m/s
Explanation:
The parameters given are
Mass M = 60 kg
Height h = 0.8 m
Acceleration due to gravity g= 10 m/s2
Before the man jumps, he will be experiencing potential energy at the top of the table.
P.E = mgh
Substitute all the parameters into the formula
P.E = 60 × 9.8 × 0.8
P.E = 470.4 J
As he jumped from the table and hit the ground, the whole P.E will be converted to kinetic energy according to conservative of energy.
When hitting the ground,
K.E = P.E
Where K.E = 1/2mv^2
Substitute m and 470.4 into the formula
470.4 = 1/2 × 60 × V^2
V^2 = 470.4/30
V^2 = 15.68
V = square root (15.68)
V = 3.959 m/s
Therefore, the speed of the man when hitting the ground is approximately 4 m/s
Answer:
Explanation:
We are given that a parallel- plate capacitor is charged to a potential difference V and then disconnected from the voltage source.
1 m =100 cm
Surface area =S=
We have to find the charge Q on the positive plates of the capacitor.
V=Initial voltage between plates
d=Initial distance between plates
Initial Capacitance of capacitor
Capacitance of capacitor after moving plates
Potential difference between plates after moving
Hence, the charge on positive plate of capacitor=