Answer:
e.26m/s
Explanation:
Vf=Vi+at (1)
Vf=9j+(2i-4j)t
X= X₀+at
now, in the i direction
15=O+2t or t=7.5 when x position is 15
Lets put that into the (1) equation, solve for Vf.
Vf=9j+(2i-4j)7.5
Vf= 15i - 21j
Speed=
Vf= 25.8 m/s
Out of the given options, ‘it is described as a fundamental force and therefore does not depend on other forces’ is the true statement about gravity.
Answer: Option B
<u>Explanation:
</u>
As we all know that there are four fundamental forces existing in the universe- Electromagnetic force, strong forces, weak forces and the gravitational force.
These are the forces that don’t depend on any other physical force to draw a considerable impact on the physical objects. The gravitational force can be defined as,
Where,
G = Gravitational Constant
= Masses of two substances under consideration
R = distance between the two substances.
Looking upon the formula of gravitational force we can easily estimate that the gravitational force relies on the mass of substances and the relative distance between them. There is no factor than the air friction that hinders the gravitational force and that too in a negligible amount.
Answer:
n the case of linear motion, the change occurs in the magnitude of the velocity, the direction remaining constant.
In the case of circular motion, the magnitude of the velocity remains constant, the change in its direction occurring.
Explanation:
Velocity is a vector therefore it has magnitude and direction, a change in either of the two is the consequence of an acceleration on the system.
In the case of linear motion, the change occurs in the magnitude of the velocity, the direction remaining constant.
= (v₂-v₁)/Δt
In the case of circular motion, the magnitude of the velocity remains constant, the change in its direction occurring.
= v2/R
In the general case, both the module and the address change
a = Ra ( a_{t}^2 + a_{c}^2)
The final speed of a lion running 30 m/s accelerates at a rate of 3 m/s3 for 5 seconds it’s 3.2
Answer:
Transverse waves, because the motion of the wave is perpendicular to the direction of propagation. An S-wave is an example of a transverse wave.
Explanation: