According to the statement " Collision <span>between two bodies in which the total kinetic energy of the two bodies after the collision is equal to their total kinetic energy before the collision."
The best answer is :
Option A " </span><span>BODY A COMES TO REST BODY B STARTS MOVING WITH INITIAL VELOCITY OF BODY A "</span>
Answer:
the force between the building and the ball is non-conservative (friction-type force)
Explanation
Explanation:For this exercise the student must create an impulse to move the ball towards the building, in this part he performs positive work since the applied force and the displacement are in the same direction.
When the ball moves it has a kinetic energy and if its height increases or decreases its potential energy also changes, but the sum of being must be equal to the initial work.
When the ball arrives and collides with the building, non-conservative forces, of various kinds; rubbing, breaking, etc. It transforms this energy into a part of heat and another in mechanical energy that the building must absorb, let us destroy its wall
Consequently, the force between the building and the ball is non-conservative (friction-type force
Answer:
hello your question lacks some data and required diagram
G = 77 GPa, т all = 80 MPa
answer : required diameter = 252.65 * 10-^3 m
Explanation:
Given data :
force ( P ) = 660 -N force
displacement = 15 mm
G = 77 GPa
т all = 80 MPa
i) Determine the required diameter of shaft BC
considering the vertical displacement ( looking at handle DC from free body diagram )
D' = 0.3 sin∅ , where D = 0.015
hence ∅ = 2.8659°
calculate the torque acting at angle ∅ of CD on the shaft BC
Torque = 660 * 0.3 cos∅
= 660 * 0.3 * cos 2.8659 = 198 * -0.9622 = 190.5156 N
hello attached is the remaining part of the solution
<em>Answer:</em>
<em>The Atmosphere.</em>
<em>Explanation:</em>
<em>The Atmosphere contains all of the planets air, And without air we can't breathe so I think this would be a good answer for you to choose, have a nice day</em>