X²+3x-21=0
1) we solve this square equation:
x=[-3⁺₋√(9+84)] / 2=(-3⁺₋√93)/2
We have two solutions:
x₁=(-3-√93)/2
x₂=(-3+√93)/2
2) we compute the product of the 2 solutions found.
[(-3-√93)/2][(-3+√93)/2] =(-3-√93)(-3+√93) / 4=
=(9-93)/4=-84/4=-21
Answer: the product of the 2 solutions of this equation is -21
Answer:
Z= V/QT
Step-by-step explanation:
The answer to this is
x=8
Answer:
m < 49/12
Step-by-step explanation:
The portion of the quadratic formula under the square root sign is the discriminant.
If the discriminant is > 0 then there are two real roots.
b² -4ac > 0
-----------------------------
7² - 4(3)m > 0
49 - 12m > 0
Subtract 49 from both sides
-12m > -49
Divide both sides by -12
(when multiplying or dividing by a negative the inequality must be reversed)
m < 49/12
Answer:
3
Step-by-step explanation:
Break the problem up into two
Ignore the -1 for now
2+2=4 because if you separate 2 and 2, you get four ones, therefore it's four
Now that you have four, subtract 1
And you got 3