1. Is (0,9) a solution?
y = -3x + 5
2 answers:
1. Is (0,9) a solution?
y = -3x + 5
<h3>
Solution⤵️</h3>
Let us observe the given things;
- <u>An</u><u> </u><u>equation</u><u> </u><u>is</u><u> </u><u>given</u><u> </u><u>with</u><u> </u><u>variables</u><u> </u><u>x</u><u> </u><u>and</u><u> </u><u>y</u>
- <u>The</u><u> </u><u>values</u><u> </u><u>of</u><u> </u><u>x</u><u> </u><u>and</u><u> </u><u>y</u><u> </u><u>are</u><u> </u><u>given</u>
- <u>We</u><u> </u><u>have</u><u> </u><u>to</u><u> </u><u>find</u><u> </u><u>whether</u><u> </u><u>they</u><u> </u><u>are</u><u> </u><u>the</u><u> </u><u>correct</u><u> </u><u>values</u><u> </u><u>or</u><u> </u><u>not</u>
- <u>Let</u><u> </u><u>us</u><u> </u><u>verify</u><u> </u><u>if</u><u> </u><u>they</u><u> </u><u>are</u><u> </u><u>a</u><u> </u><u>solution</u><u> </u><u>or</u><u> </u><u>not</u><u>!</u><u>~</u>
Plug in the x and y values I.e. x=0 & y=9 respectively
Multiply the numbers
Add the numbers
Check the equality
They are not equal!
<em>Since</em><em>,</em><em> </em><em>They</em><em> </em><em>are</em><em> </em><em>not</em><em> </em><em>equal</em><em> </em><em>we</em><em> </em><em>can</em><em> </em><em>conclude</em><em> </em><em>that</em><em> </em><em>the</em><em> </em><em>given</em><em> </em><em>coordinates</em><em> </em><em>are</em><em> </em><em>not</em><em> </em><em>a</em><em> </em><em>solution</em><em> </em><em>to</em><em> </em><em>the</em><em> </em><em>given</em><em> </em><em>equation</em><em>!</em><em>!</em><em>~</em>
Answer:
no
Step-by-step explanation:
to determine if (0, 9 ) is a solution substitute x = 0 into the equation and if the result is 9 then it is a solution
y = - 3(0) + 5 = 0 + 5 = 5 ≠ 9
then (0, 9 ) is not a solution to the equation
You might be interested in
Answer:
12) mode= no mode
mean=62
median=81
13) mode=74
mean=78
median =74
14) mode=80
mean=73
median=70
15)mode=70
mean=74
median=75
16)mode-no mode
mean=51
median=45
17)mode=86
mean=55
median=77
18)mode=no mode
mean=79
median=78
19)mode=70
mean=77
median=79
hope that helps :D
In this question, we have to find the complement and supplement of the given angles .
Complementary angles are those angles whose sum is 90 degree and supplementary angles are those angles whose sum is 180 degree.
So to find the complement and supplement angles, we need to subtract the given angles from pi/2 and pi respectively .
a.
b.
Answer:
5 is interpolation
hope this helps!
Term to be added is: + 121/4
t^2 + 11t + 121/4
(t + 11/2) (t + 11/2)
Answer:a I think although I’m really tired
Step-by-step explanation: