Galaxy million of star and planet. gravitional wave field all the universe some planet explosive itself moving other places . Black holes Mass gravity field
That is the mst best eway to find its solution.
37.4/2.2*10^3 = 0.017 gm/liter or 1.7*10^-2
so we conclude that option b is sorrect
Hello!
a) Assuming this is asking for the minimum speed for the rock to make the full circle, we must find the minimum speed necessary for the rock to continue moving in a circular path when it's at the top of the circle.
At the top of the circle, we have:
- Force of gravity (downward)
*Although the rock is still connected to the string, if the rock is swinging at the minimum speed required, there will be no tension in the string.
Therefore, only the force of gravity produces the net centripetal force:
We can simplify and rearrange the equation to solve for 'v'.
Plugging in values:
b)
Let's do a summation of forces at the bottom of the swing. We have:
- Force due to gravity (downward, -)
- Tension force (upward, +)
The sum of these forces produces a centripetal force, upward (+).
Rearranging for 'T":
Plugging in the appropriate values:
Answer:
78.498N
Explanation:
The Net force provided by the spinnaker can be obtained from Newton's second law of motion as follows;
where m is the mass, v is the final velocity, u is the initial velocity and t is the time interval for which the force acted.
Given;
m =980lb
v = 12mi/h
u =8mi/hr
t = 10s.
It is important to convert all quantities to their SI units where necessary, so we do that as follows;
1lb = 0.45kg,
hence 980lb = 980 x 0.45kg = 441kg.
1mile = 1609.34m
1hour = 3600s,
therefore;
Substituting all values into equation (1), we obtain the following;