For pressurized water reactors the coolant is not permitted to boil in the core of the PRW, however the coolant in boiling water reactors is permitted to do so in the core of BWR. Pressurized water reactors have an indirect cycle. Whereas, the boiling water reactors go through a direct cycle. Both are light water reactors.
Answer:
just before landing the ground
Explanation:
Let the velocity of projection is u and the angle of projection is 30°.
Let T is the time of flight and R is the horizontal distance traveled. As there is no force acting in horizontal direction, so the horizontal velocity remains constant. Let the particle hits the ground with velocity v.
initial horizontal component of velocity, ux = u Cos 30
initial vertical component of velocity, uy = u Sin 30
Time of flight is given by
Final horizontal component of velocity, vx = ux = u Cos 30
Let vy is teh final vertical component of velocity.
Use first equation of motion
vy = uy - gT
vy = - u Sin 30
The magnitude of final velocity is given by
v = u
Thus, the velocity is same as it just reaches the ground.
Option A 3......
... ........
Answer:
a. negative
b. zero
Explanation:
work is the change in the energy of a system due to external forces
work is done when a force moves a load through a distance in the direction of the force
The work done by a force on a system is positive when the force and the force displacement point in the same direction and negative when they point in opposite directions
in the scenario we are considering in the question, the force (the hand) moves the block vertically upwards but the displacement of the block reduces (in the opposite direction) since it decelerates. as such the work done by gravity on the block is negative.
the work done on the block is zero if the system consists of the block and the earth because there is no gravitational force exerted on the system
Answer:
B) PbI2 + 2 KCl
Explanation:
To keep the the law of conservation of matter, the equation given above must be balanced i.e the total element in the reactant must be equal to the total elements in the product.
Given the equation
PbCl2 (aq) + 2 KI (aq) →
At the reactant shown, there are one mole of lead Pb, 2 moles of chlorine Cl, 2moles of Potassium K and 2 moles of Iodine.
During reaction, the Chlorine atom will react with the potassium atom K and the lead atom Pb will react with the iodine atom.
The resulting product that will balance the chemical equation is
PbI2 + 2 KCl
The equation will then become
PbCl2 (aq) + 2 KI (aq) → PbI2 + 2 KCl
If we look at both sides of the equation, we will see that all the elements have the same number of atoms.