<span>Answer:
From the ideal gas law, MM=mRTPV; where MM = molecular mass; m = mass; P = pressure in atmospheres; V= volume in litres; R = gas constant with appropriate units.
So, 0.800â‹…gĂ—0.0821â‹…Lâ‹…atmâ‹…Kâ’1â‹…molâ’1Ă—373â‹…K0.256â‹…LĂ—0.987â‹…atm = 97.0 gâ‹…molâ’1.
nĂ—(12.01+1.01+2Ă—35.45)â‹…gâ‹…molâ’1 = 97.0â‹…gâ‹…molâ’1.
Clearly, n = 1. And molecular formula = C2H2Cl2.
I seem to recall (but can't be bothered to look up) that vinylidene chloride, H2C=C(Cl)2 is a low boiling point gas, whereas the 1,2 dichloro species is a volatile liquid. At any rate we have supplied the molecular formula as required.</span>
Reaction: 2K₍s₎ + 2H₂O₍l₎ → 2KOH₍aq₎ + H₂₍g₎.
K - potassium.
H₂O - water.
KOH - potassium-hydroxide.
H₂ - hydrogen.
s - solid phase.
l - liquid.
aq - disolves in water.
g - gas.
Reaction is exothermal (release of energy) and potassium burns a purple flame. H<span>ydrogen released during the reaction reacts with </span>oxygen<span> and ignites.</span><span>
</span>
Answer:
Isostasy controls the regional elevations of continents and ocean floors in accordance with the densities of their underlying rocks. ... The concept of isostasy played an important role in the development of the theory of plate tectonics.
Answer: Option (A) is the correct answer.
Explanation:
Force acting on a dam is as follows.
F = .......... (1)
Now, when we double the depth then it means H is increasing 2 times and then the above relation will be as follows.
F' =
F' = ........... (2)
Now, dividing equation (1) by equation (2) as follows.
=
Cancelling the common terms we get the following.
=
4F = F'
Thus, we can conclude that if doubled the depth of the dam the hydrostatic force will be 4F.