Answer:
The astronaut can throw the hammer in a direction away from the space station. While he is holding the hammer, the total momentum of the astronaut and hammer is 0 kg • m/s. According to the law of conservation of momentum, the total momentum after he throws the hammer must still be 0 kg • m/s. In order for momentum to be conserved, the astronaut will have to move in the opposite direction of the hammer, which will be toward the space station.
Explanation:
They communicate their result to the scientific community- so to speak
If the distance to a point source of sound is doubled, by a multiplicative factor of 4, the intensity changes.
Intensity of sound is the sound which is perpendicular to sound wave propogation per unit area. It is dependent on the Surface of source sound.
Intensity is the Power per unit area. Its SI unit is Watt/m².
As we move away from a source of sound, the sound starts to diminish. This is due to the decreasing sound intensity with distance.
It can also be understood by the fact that on increasing distance, the Power radiated by the source spreads over a larger area. Hence, the Intensity decreases gradually.
Since, Intensity is proportional to the square of the distance.
Hence, on doubling the distance, Intensity reduces to one fourth of the initial intensity or reduces by a multiplicative factor of 4.
Learn more about Intensity here, brainly.com/question/17583145
#SPJ4
Answer:
12 units
Explanation:
This problem can be solved if we take into account the equation for a sphere
where we took that the radius is 13 units. If we take z=5 and we replace this value in the equation of the sphere we have
where we have taken x2 +y2 because if the equation of a circunference.
In this case the intersection is made when we take z=5, for this value the sphere and the plane coincides in values.
Hence, the radius is 12 units
I hope this is useful for you
regards