Draw a diagram to illustrate problem as shown below.
Let h = the height of the tree.
Because ΔABC ~ ΔADE, therefore
DE/BC = AD/AB
That is,
h/1.94 = (5.1 + 10.2)/5.1 = 3
h = 1.94*3 = 5.82 m
Answer: 5.82 m
<em>So</em><em> </em><em>the</em><em> </em><em>answer</em><em> </em><em>is</em><em> </em><em>1</em><em>3</em><em>.</em><em>5</em>
<em>Look</em><em> </em><em>at</em><em> </em><em>the</em><em> </em><em>attached</em><em> </em><em>picture</em><em>⤴</em>
<em>Hope</em><em> </em><em>it</em><em> </em><em>will</em><em> </em><em>help</em><em> </em><em>u</em><em>.</em><em>.</em>
Answer:
B) h(x) = –2x + 200
Step-by-step explanation:
f(x) = 3x + 400
g(x) = 5x + 200
f(x) - g(x) = 3x + 400 - (5x + 200) = -2x + 200
Answer:
Option 2: (1,0) is the correct answer
Step-by-step explanation:
Given inequality is:
y>-5x+3
In order to find which point is solution to the given inequality we'll put the point one by one in the inequality. If the point satisfies the inequality, then the point is the solution of the inequality.
Putting (0,3) in inequality
Putting (1,0) in inequality
Putting (-3,1) in inequality
Putting (-1,-2) in inequality
The inequality is true for (1,0)
Hence,
Option 2: (1,0) is the correct answer
The solutions are (2.1925, 5.1925) and (-3.1925, -0.1925)
<em><u>Solution:</u></em>
Given that,
<em><u>We have to substitute eqn 1 in eqn 2</u></em>
Substitute x = 2.1925 in eqn 1
y = 2.1925 + 3
y = 5.1925
Substitute x = -3.1925 in eqn 1
y = -3.1925 + 3
y = -0.1925
Thus the solutions are (2.1925, 5.1925) and (-3.1925, -0.1925)