Answer:
I'm pretty sure it's 20m/s because 1300m divided by 65 seconds is 20 so I think it's 20m/s
Explanation:
Answer:
-611.32 N/C
0.43723 m
Explanation:
k = Coulomb constant =
q = Charge = -4.25 nC
r = Distance from particle = 0.25 m
Electric field is given by
The magnitude is 611.32 N/C
The electric field will point straight down as the sign is negative towards the particle.
The distance from the electric field is 1.71436 m
Answer:
C
Explanation:
Because this same question was on my test last week and I got it correct
<span>Depends on the precision you're working to.
proton mass ~ 1.00728 amu
neutron mass ~ 1.00866 amu
electron mass ~ electron mass = 0.000549 amu
Binding mass is:
mass of constituents - mass of atom
Eg for nitrogen:
(7*1.00728)-(7*1.00866)-(7*0.000549)
-14.003074 = 0.11235amu
Binding energy is:
E=mc^2 where c is the speed of light. Nuclear physics is usually done in MeV[1] where 1 amu is about 931.5MeV/c^2. So:
0.11235 * 931.5 = 104.6MeV
Binding energy per nucleon is total energy divided by number of nucleons. 104.6/14 = 7.47MeV
This is probably about right; it sounds like the right size!
Do the same thing for D/E/F and recheck using your numbers & you shouldn't go far wrong :)
1 - have you done this? MeV is Mega electron Volts, where one electronVolt (or eV) is the change in potential energy by moving one electron up a 1 volt potential. ie energy = charge * potential, so 1eV is about 1.6x10^-19J (the same number as the charge of an electron but in Joules).
It's a measure of energy, but by E=mc^2 you can swap between energy and mass using the c^2 factor. Most nuclear physicists report mass in units of MeV/c^2 - so you know that its rest mass energy is that number in MeV.</span>
When supernova explodes
because of the collapsing cores, the core itself will become a neutron star or
a white dwarf without undergoing any kind of explosive transformation. The white
dwarf stars can also become supernova if they orbit another star in a binary
system and steal material from their companion. In addition, the end state of a
star, whether it will explode as a supernova become a black hole.