<span>assume z = ax for simplicity
z(z) = a(ax) = a^2x
let a^2x = 1/16x and solve for a </span>
Answer:
Decay
since 0.292 is less than 1
% rate of decrease
1 - 0.292 = 0.708
70.8%
6,9,8 hope you have a great day :D
Answer:
P_max = 9.032 KN
Step-by-step explanation:
Given:
- Bar width and each side of bracket w = 70 mm
- Bar thickness and each side of bracket t = 20 mm
- Pin diameter d = 10 mm
- Average allowable bearing stress of (Bar and Bracket) T = 120 MPa
- Average allowable shear stress of pin S = 115 MPa
Find:
The maximum force P that the structure can support.
Solution:
- Bearing Stress in bar:
T = P / A
P = T*A
P = (120) * (0.07*0.02)
P = 168 KN
- Shear stress in pin:
S = P / A
P = S*A
P = (115)*pi*(0.01)^2 / 4
P = 9.032 KN
- Bearing Stress in each bracket:
T = P / 2*A
P = T*A*2
P = 2*(120) * (0.07*0.02)
P = 336 KN
- The maximum force P that this structure can support:
P_max = min (168 , 9.032 , 336)
P_max = 9.032 KN
Answer:
2
Step-by-step explanation: