<h2>
Answer with explanation:</h2>
Given : In a restaurant, the proportion of people who order coffee with their dinner is p.
Sample size : n= 144
x= 120
The null and the alternative hypotheses if you want to test if p is greater than or equal to 0.85 will be :-
Null hypothesis : [ it takes equality (=, ≤, ≥) ]
Alternative hypothesis : [its exactly opposite of null hypothesis]
∵Alternative hypothesis is left tailed, so the test is a left tailed test.
Test statistic :
Using z-vale table ,
Critical value for 0.05 significance ( left-tailed test)=-1.645
Since the calculated value of test statistic is greater than the critical value , so we failed to reject the null hypothesis.
Conclusion : We have enough evidence to support the claim that p is greater than or equal to 0.85.
Answer:
Solution: x = -2; y = 3 or (-2, 3)
Step-by-step explanation:
<u>Equation 1:</u> y = -5x - 7
<u>Equation 2:</u> -4x - 3y = -1
Substitute the value of y in Equation 1 into the Equation 2:
-4x - 3(-5x - 7) = -1
-4x +15x + 21 = -1
Combine like terms:
11x + 21 = - 1
Subtract 21 from both sides:
11x + 21 - 21 = - 1 - 21
11x = -22
Divide both sides by 11 to solve for x:
11x/11 = -22/11
x = -2
Now that we have the value for x, substitute x = 2 into Equation 2 to solve for y:
-4x - 3y = -1
-4(-2) - 3y = -1
8 - 3y = -1
Subtract 8 from both sides:
8 - 8 - 3y = -1 - 8
-3y = -9
Divide both sides by -3 to solve for y:
-3y/-3 = -9/-3
y = 3
Therefore, the solution to the given systems of linear equations is:
x = -2; y = 3 or (-2, 3)
Please mark my answers as the Brainliest if you find this helpful :)
Money spent at grocery store = x, money spent at game store = y
x = 24
x = 2y - 6
24 = 2y - 6
24 + 6 = 2y
30 = 2y
30/2 = y
15 = y <=== spent 15 at game store
It would be 104? I don’t understand the question but I guessing you’re adding
Answer:
D. Because we would be interested in any difference between running on hard and soft surfaces, we should use a two-sided hypothesis test
Step-by-step explanation:
Hello!
When planning what kind of hypothesis to use, you have to take into account any other studies that were made about that topic so that you can decide the orientation you will give them.
Normally, when there is no other information available to give an orientation to your experiment, the first step to take is to make a two-tailed test, for example, μ₁=μ₂ vs. μ₁≠μ₂, this way you can test whether there is any difference between the two stands. Only after having experimental evidence that there is any difference between the treatments is there any sense into testing which one is better than the other.
I hope you have a SUPER day!