Walk out. If it's denser than air, it'll settle to the bottom
The answer is C (the same number of valence electrons)
As we know that the formula of kinetic energy will be
now here we know that
m = 2 kg
v = 1 m/s
so from the above equation we have
Answer:
Explanation:
A ) When gymnast is motionless , he is in equilibrium
T = mg
= 63 x 9.81
= 618.03 N
B )
When gymnast climbs up at a constant rate , he is still in equilibrium ie net force acting on it is zero as acceleration is zero.
T = mg
= 618.03 N
C ) If the gymnast climbs up the rope with an upward acceleration of magnitude 0.600 m/s2
Net force on it = T - mg , acting in upward direction
T - mg = m a
T = mg + m a
= m ( g + a )
= 63 ( 9.81 + .6)
= 655.83 N
D ) If the gymnast slides down the rope with a downward acceleration of magnitude 0.600 m/s2
Net force acting in downward direction
mg - T = ma
T = m ( g - a )
= 63 x ( 9.81 - .6 )
= 580.23 N
This phenomena is also called the Doppler shift. When the source of light is approaching towards an observer, the color tends to be blue shifted, but when the source is moving away or being stretch, the color tends to red shifted. In astronomy it can be use how fast galaxy is moving towards us or how fast it moves away.