Answer:
C. 28.09 amu
Explanation:
The natural occurring element exist in 3 isotopic forms: namely X-28 (27.977 amu, 92.23% abundance), X-29 (28.976 amu, 4.67% abundance) and X-30 (29.974 amu, 3.10% abundance).
The atomic weight of elements depends on the isotopic abundance. If you know the fractional abundance and the mass of the isotopes the atomic weight can be computed.
The atomic weight is computed as follows:
atomic weight = mass of X-28 × fractional abundance + mass of X-29 × fractional abundance + mass of X-30 × fractional abundance
atomic weight = 27.977 × 0.9223 + 28.976 × 0.0467 + 29.974 × 0.0310
atomic weight = 25.8031871 + 1.3531792 + 0.929194
atomic weight = 28.0855603 amu
To 2 decimal place atomic weight = 28.09 amu
The Moon is 3.8 108 m from Earth and has a mass of 7.34 1022 kg. 5.97 1024 kg is the mass of the Earth.
<h3>What kind of gravitational pull does the moon have on the planet?</h3>
On the surface of the Moon, the acceleration caused by gravity around 1.625 m/s2 which is 16.6% greater than on the surface of the Earth 0.166.
<h3>What does the Earth's center's gravitational pull feel like?</h3>
Gravity is zero if you are in the centre of the earth since everything around you is pulling "up" (up is the only direction).
<h3>Where is the Earth's and the moon's gravitational centre?</h3>
It is around 1700 kilometres below Earth's surface.
To know more about gravitational force visit:-
brainly.com/question/12528243
#SPJ4
Answer:
6.0 m/s vertical and 9.0 m/s horizontal
Explanation:
For the vertical component, we use the formula:
- Sin(34°) = <em>y</em> / 10.8
Then we <u>solve for </u><u><em>y</em></u>:
- 0.559 = <em>y</em> / 10.8
And for the horizontal component, we use the formula:
- Cos(34°) = <em>x</em> / 10.8
Then we <u>solve for </u><u><em>x</em></u><u>:</u>
- 0.829 = <em>x</em> / 10.8
So the answer is " 6.0 m/s vertical and 9.0 m/s horizontal".
Answer:
180 W
Explanation:
The work done by the man against gravity is equal to its gain in gravitational potential energy:
where
(mg) = 720 N is the weight of the man
is the change in height
Substituting,
The power he must deliver is given by
where
W = 3600 J
t = 20 s is the time taken
Substituting,
1 - Skull
2 - Mandible
3 - Scapula
4 - Sternum
5 - Ulna
6 - Radius
7 - Pelvis
8 - Femur
9 - Patella
10 - Tibia
11 - Fibula
12 - Metatarsals
13 - Clavicle
14 - Ribs (rib cage)
15 - Humerus
16 - Spinal column
17 - Carpals
18 - Metacarpals
19 - Phalanges
20 - Tarsals
21 - Phalanges