Answer:
H2SO4 + 2NaOH ==> Na2SO4 + 2H2O
Explanation:
Answer:
They have electrons in their 3d- and 4s-orbital for bond formation.
Explanation:
d- metals or transition metal are metal which form ion with partially filled d-orbital. Examples are iron and manganese.
The metals have 2 electrons in their 4s orbital. If only this is used for bonding, they will form compounds where they have oxidation State of +2 as seen in MnO.
If two 4s and one of 3d electrons are used, oxidation state of +3 is formed as seen in FeCl3.
If two 2s electron I used with two 3d electrons, compound with oxidation state of +4 is formed as seen in MnO2
I believe that the answer is ionic
Baloon with 3 moles og oxygen at 1 atm.The temperature of the balloon is <u>4 Kelvin</u>.
An ideal gas is a theoretical gas composed of many randomly transferring factor particles that aren't difficult to interparticle interactions. the best gasoline idea is beneficial because it obeys the precise gas law, a simplified equation of country, and is amenable to evaluation under statistical mechanics.
An ideal gas is described as one for which both the extent of molecules and forces between the molecules are so small that they have got no effect at the behavior of the gas. The real gas that acts almost like a really perfect gasoline is helium. that is due to the fact helium, in contrast to maximum gases, exists as an unmarried atom, which makes the van der Waals dispersion forces as low as viable
Using the ideal gas equation:-
Given;
P₁ = 1 atm
V₁ = 100 L
n = 3
r = 8.314
T = PV/nR
= 1 × 100 / 3 × 8.314
= 4 K
Learn more about ideal gas here:-brainly.com/question/20348074
#SPJ4
Remember that density refers to the "mass per unit volume" of an object.
So, if an object had a mass of 100 grams and a volume of 100 milliliters, the density would be 100 grams / 100 ml.
In the question, water on the surface of the scale would add weight, so the mass of the object that you're weighing would appear to be heavier than it really is. If that happens, you'll incorrectly assume that the density is GREATER than it really is
As an example, suppose that there was 5 ml of water on the surface of the scale. Water has a density of 1 gram per milliliter (1 g/ml) so the water would add 5 grams to the object's weight. If we use the example above, the mass of the object would seem to be 105 grams, rather than 100 grams. So, you would calculate:
density = mass / volume
density = 105 grams / 100 ml
density = 1.05 g/ml
The effect on density would be that it would erroneously appear to be greater
Hope this helps!
Good luck