Use equations of motion to get the correct answer!
Answer:
the mass should be bring closer to the point about which we are finding torque
Explanation:
τ = Σr × F = rmg
where m is the mass, g is acceleration due to gravity, and r is the distance
Torque is directly proportional to -
1.mass, m , of object
2. distance, r, of the mass from the point about which we are finding the torque.
So if we increase or decrease them then the torque will also increase or decrease.
So if we increase the mass the torque will increase but since we have to maintain same torque therefore we have to decrease the distance of mass from the point about which we are finding torque.
Therefore the mass should be bring closer to the point about which we are finding torque.
The object that a satellite revolves around is the <em>central body</em> of the system. <em>(C)</em>
For example:
-- The central body of the solar system is the Sun.
-- The central body for TV satellites, GPS satellites, weather satellites, and the International Space Station is the Earth.
-- The central body for Phobos and Deimos is Mars.
This should be a pretty easy question to answer by elimination, when you notice that "Orbit", "Period", and "Rotation" are not "Bodies".
In covalent bonds the atoms share electrons.
Answer:
L = 41.09 Kg m2 / s The angular momentum does not depend on the time
Explanation:
The definition of angular momentum is
L = r x p
Where blacks indicate vectors
Let's apply this definition our case. Linear momentum
p = m v
Let's replace
L = m r x v
The given function is
x = 6.00 i ^ + 4.15 t j
^
We look for speed
v = dx / dt
v = 0 + 4.15 j ^
To evaluate the angular momentum one of the best ways is to use determinants
L = m 6 4.15 k ^
The other products give zero
Let's calculate
L = 1.65 6 4.15 k ^
L = 41.09 Kg m2 / s
The angular momentum does not depend on the time