Hey there!:
Write the molecular equation for the reaction of MgSO4 with Pb(NO3)2 :
MgSO4(aq) + Pb(NO3)2(aq) ---> Mg(NO3)2(aq) + PbSO4(s)
Write the total ionic equation for the reaction :
Mg²⁺ (aq) + SO₄⁻² (aq) + Pb²⁺ (aq) + 2 NO₃⁻¹ (aq) + PbSO₄(s)
Therefore:
Cancel the spectator ions on both sides:
Pb²⁺ (aq) + SO₄⁻² (aq) ---> PbSO4(s)
Hope that helps!
The early atmosphere was probably mostly carbon dioxide, with little or no oxygen. <span>The proportion of oxygen went up because of </span>photosynthesis. The photosynthesis was conducted from <span>tiny organisms.
</span><span>cyanobacteria, or blue-green algae. </span><span>
They </span>used sunshine, water and carbon dioxide to produce carbohydrates and, yes, oxygen. This change to the atmosphere was very important because the <span>breathable air we enjoy today was created.</span>
The rate of chemical reactions generally happen <em>faster</em> when the temperature is raised.
This happens because the reactant's molecules move faster when the temperature is raised. The molecules start to bounce around more, increasing the chance for the reaction to happen, or to increase the speed at which the reaction occurs. Hope this helped.
1) You need to get volume of both temperatures by using first attached formula V= Mass/Density
2) Using the second formula you get the height of 0 degree
(radius in cm is
3) Then with h1 you can easily get the height of 25 degrees
Subtract 943.5 cm - 939.2 cm, and obtain a rise in mercury height of 4.3 cm