Answer:
a) P(Y > 76) = 0.0122
b) i) P(both of them will be more than 76 inches tall) = 0.00015
ii) P(Y > 76) = 0.0007
Step-by-step explanation:
Given - The heights of men in a certain population follow a normal distribution with mean 69.7 inches and standard deviation 2.8 inches.
To find - (a) If a man is chosen at random from the population, find
the probability that he will be more than 76 inches tall.
(b) If two men are chosen at random from the population, find
the probability that
(i) both of them will be more than 76 inches tall;
(ii) their mean height will be more than 76 inches.
Proof -
a)
P(Y > 76) = P(Y - mean > 76 - mean)
= P( ) > )
= P(Z > )
= P(Z > )
= P(Z > 2.25)
= 1 - P(Z ≤ 2.25)
= 0.0122
⇒P(Y > 76) = 0.0122
b)
(i)
P(both of them will be more than 76 inches tall) = (0.0122)²
= 0.00015
⇒P(both of them will be more than 76 inches tall) = 0.00015
(ii)
Given that,
Mean = 69.7,
= 1.979899,
Now,
P(Y > 76) = P(Y - mean > 76 - mean)
= P( )) > )
= P(Z > )
= P(Z > ))
= P(Z > 3.182)
= 1 - P(Z ≤ 3.182)
= 0.0007
⇒P(Y > 76) = 0.0007
Answer:
x = - 14
Step-by-step explanation:
23 + 4 + x = 25 - 12
Combine like terms on both sides of the equation (by adding 23 and 4 on the left-hand side, and subtracting 12 from 25 on the right-hand side):
23 + 4 + x = 25 - 12
27 + x = 13
Next, subtract 27 from both sides to solve for x:
27 - 27 + x = 13 - 27
x = - 14
Please mark my answers as the Brainliest if you find this explanation helpful :)
<em>x </em>= 17
___
10 something like that, but closer together. LOL sorry!!
12(4)-1
48-1
47 is the answer