Answer:
- the coating’s index of refraction is 1.25
- the required thickness is 104.1667 nm
Explanation:
Given the data in the question;
Thickness of coating t = 100 nm
wavelength λ = 500nm
we know that refractive index is;
t = λ/4n
make n, the subject of formula
t4n = λ
n = λ / 4t
we substitute
n = 500 / ( 4 × 100 )
n = 500 / 400
n = 1.25
Therefore, the coating’s index of refraction is 1.25
2)
given that;
Index of refraction of the coating; n = 1.20
λ = 500 nm
thickness of coating t = ?
t = λ / 4n
we substitute
t = 500 / ( 4 × 1.2 )
t = 500 / 4.8
t = 104.1667 nm
Therefore, the required thickness is 104.1667 nm
Answer: 2.67 m/s^2
Explanation:
Centripetal acceleration is defined as v^2/r; in this case, it's 2^2/1.5, which is 2.67.
Answer:
a)
b)
c)
d) or 18.3 cm
Explanation:
For this case we have the following system with the forces on the figure attached.
We know that the spring compresses a total distance of x=0.10 m
Part a
The gravitational force is defined as mg so on this case the work donde by the gravity is:
Part b
For this case first we can convert the spring constant to N/m like this:
And the work donde by the spring on this case is given by:
Part c
We can assume that the initial velocity for the block is Vi and is at rest from the end of the movement. If we use balance of energy we got:
And if we solve for the initial velocity we got:
Part d
Let d1 represent the new maximum distance, in order to find it we know that :
And replacing we got:
And we can put the terms like this:
If we multiply all the equation by 2 we got:
Now we can replace the values and we got:
And solving the quadratic equation we got that the solution for or 18.3 cm because the negative solution not make sense.