Answer: The sample size would be needed = 385
Step-by-step explanation:
Let p be the prior population proportion.
Margin of error = E
When not estimate of p is given , the formula to calculate the minimum sample size <em>n</em> = , where z* = critical value for given confidence interval.
Here z* for 95% confidence level is 1.96.
E=5%=0.05
Then
Hence, the sample size would be needed = 385
Step-by-step explanation:
The lines have different slopes
<em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>,</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em>
Answer:
* The mean (a measure of central tendency) weight value is the average of the weights of all pennies in the study.
* The standard deviation (a measure of variability or dispersion) describes the lowest and highest any individual penny weight can be. Subtracting 0.02g from the mean, you get the lowest penny weight in the group.
Step-by-step explanation:
Recall that a penny is a money unit. It is created/produced, just like any other commodity. As a matter of fact, almost all types of money or currency are manufactured; with different materials ranging from paper to solid metals.
A group of pennies made in a certain year are weighed. The variable of interest here is weight of a penny.
The mean weight of all selected pennies is approximately 2.5grams.
The standard deviation of this mean value is 0.02grams.
In this context,
* The mean (a measure of central tendency) weight value is the average of the weights of all pennies in the study.
* The standard deviation (a measure of variability or dispersion) describes the lowest and highest any individual penny weight can be. Subtracting 0.02g from the mean, you get the lowest penny weight in the group.
Likewise, adding 0.02g to the mean, you get the highest penny weight in the group.
Hence, the weight of each penny in this study, falls within
[2.48grams - 2.52grams]
It starts becoming bigger :)