Answer:
Betty
Explanation:
Since they're both on the most sequence but Betty is more luminous than Wilma, Betty must be located to a higher place on the most sequence. Therefore, Betty encompasses a hotter surface temperature, is more massive, and encompasses a larger radius. Betty also will evolve faster than Wilma, and if they were formed at the identical time Betty will put off the most sequence first
Answer:
d
Explanation:
we simplify the circuit into groups to obtain a complete circuit I.e series and parallel circuit
Answer:
work being done on an object.
Answer. A. A man pushes a couch across the room
diagram identifies an axle:
Answer: B. Z
simple machine described as a shaft at the center of a wheel:
Answer: D. Wheel and axle
Type of lever:
A. a catapult
Answer:
The coefficient of friction causes the force on the object to be less than its initial reading on the spring scale.
Explanation:
Since the block reads 24.5 N before the block starts to move, this is its weight. Now, when the block starts to move at a constant velocity, it experiences a frictional force which is equal to the force with which the student pulls.
Now, since the velocity is constant so, there is no acceleration and thus, the net force is zero.
Let F = force applied and f = frictional force = μN = μW where μ = coefficient of friction and N = normal force. The normal force also equals the weight of the object W.
Now, since F - f = ma and a = 0 where a = acceleration and m = mass of block,
F - f = m(0) = 0
F - f = 0
F = f
Since the force applied equals the frictional force, we have that
F = μW and F = 23.7 N and W = 24.5 N
So, 23.7 N = μ(24.5 N)
μ = 23.7 N/24.5 N
μ = 0.97
Since μ = 0.97 < 1, the coefficient of friction causes the force on the object to be less than its initial reading on the spring scale.
They are both good conductors if both heat and electricity due to the sea of delocalized electrons that is floating around without getting bonded to an atom.
Such electrons can flow around freely to conduct heat and electricity.