Answer:
CeO₂
Explanation:
Hello!
In this case, since we are given the mass of both cerium and the cerium oxide, we can first compute the moles of cerium and the moles of oxygen as shown below:
Now, we simply divide each moles by 0.03 as the fewest moles in the formula to obtain the simplest formula (empirical formula) of this oxide:
Thus, the formula turns out:
Regards!
Bone age : 22,920 years
<h3>Further explanation</h3>
Given
Nt = 2.5 g C-14
No = 40 g
half-life = 5730 years
Required
time of decay
Solution
General formulas used in decay:
t = duration of decay
t 1/2 = half-life
N₀ = the number of initial radioactive atoms
Nt = the number of radioactive atoms left after decaying during T time
Input the value :
First solve the moles of oxgen present in the compound
mol O = 6.93 g O ( 1 mol O / 16 g O )
mol O = 0.43 mol H
then solve the moles of hydrogen present
mol H = ( 7.36 - 6.93) g H ( 1 mol H / 1 g H)
mol H = 0.43 mol H
so the O and H are in the same mole content so the molecular formula would be OH, but the molar mass will not satisfy. so the answer would be
H2O2
Answer:
3.2L
Explanation:
PV=nRT
since pressure and temperature are held constant we have V=nR
R is a constant also,
Thus;
v1=1.5L , n1=3mol, n2=1.4mol
v2=
v2=3.2L