First, find moles of gold given the mass of the sample:
(35.9g Au)/(197.0g/mol Au) = 0.182mol Au
Second, multiply moles of Au by Avogrado's number:
(0.182mol)(6.02 x10^23)= 1.10x10^23 atoms Au
Answer:
No, ΔE does not always equal zero because it refers to the systems internal energy, which is affected by heat and work
Explanation:
According to the first law of thermodynamics, energy is neither created nor destroyed. This implies that the total energy of a system is always a constant.
So, according to the first law of thermodynamics we have that ΔE = q + w. This means that the value of ΔE depends on q (heat) and w(work). Hence ΔE is not always zero since it depends on the respective values of q and w.
We know 1 mole of any atom or molecules contains atom or molecules.
1 mole of HBr i.e 81 gm/mol contains atom or molecules.
So, mass of molecules is :
Therefore, mass of molecules is 1.21 gm .
Hence, this is the required solution.
Answer:
The temperature at which the liquid vapor pressure will be 0.2 atm = 167.22 °C
Explanation:
Here we make use of the Clausius-Clapeyron equation;
Where:
P₁ = 1 atm =The substance vapor pressure at temperature T₁ = 282°C = 555.15 K
P₂ = 0.2 atm = The substance vapor pressure at temperature T₂
= The heat of vaporization = 28.5 kJ/mol
R = The universal gas constant = 8.314 J/K·mol
Plugging in the above values in the Clausius-Clapeyron equation, we have;
T₂ = 440.37 K
To convert to Celsius degree temperature, we subtract 273.15 as follows
T₂ in °C = 440.37 - 273.15 = 167.22 °C
Therefore, the temperature at which the liquid vapor pressure will be 0.2 atm = 167.22 °C.
Answer:
D) contains more OH– ions than H+ ions
Explanation:
THESE ARE THE OPTIONS FOR THE QUESTION
A) causes some indicators to change color B) conducts electricity C) contains more H+ ions than OH– ions D) contains more OH– ions than H+ ions
Base can be regarded as substance which can dissociates in water then form hydroxide ions (OH–) .
Bases can be regarded as compounds which break into hydroxide ions I.e (OH-) with more other compounds if put in an aqueous solution. Hence it contains more OH– ions