We want to find how much momentum the dumbbell has at the moment it strikes the floor. Let's use this kinematics equation:
Vf² = Vi² + 2ad
Vf is the final velocity of the dumbbell, Vi is its initial velocity, a is its acceleration, and d is the height of its fall.
Given values:
Vi = 0m/s (dumbbell starts falling from rest)
a = 10m/s² (we'll treat downward motion as positive, this doesn't affect the result as long as we keep this in mind)
d = 80×10⁻²m
Plug in the values and solve for Vf:
Vf² = 2(10)(80×10⁻²)
Vf = ±4m/s
Reject the negative root.
Vf = 4m/s
The momentum of the dumbbell is given by:
p = mv
p is its momentum, m is its mass, and v is its velocity.
Given values:
m = 10kg
v = 4m/s (from previous calculation)
Plug in the values and solve for p:
p = 10(4)
p = 40kg×m/s
I would think Predator B would get more food from the species since Predator A was Eliminated.
For Example: if two dogs want the same bowl of food, they are going to fight or try and beat one another to it. So if Predator A is gone then Predator B has the species all to himself unsless another Predator comes.
Hope this helped!!
(vx)f=(vx)i + a(t)
since it starts from rest the initial velocity is zero so you can do some algebra and get your (a).
Answer:
-5m/s
Explanation:
Since
acceleration=final velocity-initial velocity/time
2.5m/s^2=20m/s- initial velocity/10s
2.5m/s^2×10s= 20m/s -initial velocity
25m/s=20m/s - initial velocity
Initial velocity=20m/s-25m/s
= -5m/s