Once the atomic number of an atom is known, the number of electrons can be deduced depending on if the atom is an ion or a neutral one.
<h3>Atomic number</h3>
The atomic number of an atom is the number of protons in the nucleus of the atom.
For atoms that are neutral, that is, no net charges, the number of protons is always equal to the number of electrons. In other words, the positive charges always balance the negative charges in neutral atoms.
Thus, if the atomic number of a neutral atom is 6, for example, the proton number will also be 6. Since the proton must balance the electron, the number of electrons will also be 6.
More on atomic numbers can be found here; brainly.com/question/17274608
The terms are both about changing states. Vaporizing is when you heat something up into a vapor; condensation is when you lower a vapors temperature to make it become a liquid state.
Answer:
F = - k (x-xo) a graph of the weight or applied force against the elongation obtaining a line already proves Hooke's law.
Explanation:
The student wants to prove hooke's law which has the form
F = - k (x-xo)
To do this we hang the spring in a vertical position and mark the equilibrium position on a tape measure, to simplify the calculations we can make this point zero by placing our reference system in this position.
Now for a series of known masses let's get them one by one and measure the spring elongation, building a table of weight vs elongation,
we must be careful when hanging the weights so as not to create oscillations in the spring
we look for the mass of each weight
W = mg
m = W / g
and we write them in a new column, we make a graph of the weight or applied force against the elongation and it should give a straight line; the slope of this line is sought, which is the spring constant.
The fact of obtaining a line already proves Hooke's law.
Answer:
Wnet, in, = 133.33J
Explanation:
Given that
Pump heat QH = 1000J
Warm temperature TH= 300K
Cold temperature TL= 260K
Since the heat pump is completely reversible, the combination of coefficient of performance expression is given as,
From first law of thermodynamics,
COP(HP, rev) = 1/(1-TL/TH)
COP(HP, rev) = 1/(1-260/300)
COP(HP, rev) = 1/(1-0.867)
COP(HP, rev) = 1/0.133
COP(HP, rev) = 7.5
The power required to drive the the heat pump is given as
Wnet, in= QH/COP(HP, rev)
Wnet, in = 1000/7.5
Wnet, in = 133.333J. QED
So the 133.33J was the amount heat that was originally work consumed in the transfer.
Extra....
According to the first law, the rate at which heat is removed from the low temperature reservoir is given as
QL=QH-Wnet, in
QL=1000-133.333
QL=866.67J