Given:
The two functions are:
To find:
The statement that best compares the graph of g(x) with the graph of f(x).
Solution:
The horizontal stretch is defined as:
...(i)
If , the function f(x) is horizontally stretched by factor .
If , the function f(x) is horizontally compressed by factor .
We have,
Using these functions, we get
...(ii)
On comparing (i) and (ii), we get
Since , the function f(x) is horizontally stretched by factor .
Hence, the correct option is D.
Answer:
k=m/5
Step-by-step explanation:
explained in the attached pi
A normal distribution with a mean of 74 and a standard deviation of 7.
Mean + 1 SD = 74 + 7 = 81
Less than 81 : 50 % + 34 % = 84 %
Answer:
A ) 84 %
- Given - <u>A </u><u>trapezium</u><u> </u><u>ABCD </u><u>with </u><u>non </u><u>parallel </u><u>sides </u><u>of </u><u>measure </u><u>1</u><u>5</u><u> </u><u>cm </u><u>each </u><u>!</u><u> </u><u>along </u><u>,</u><u> </u><u>the </u><u>parallel </u><u>sides </u><u>are </u><u>of </u><u>measure </u><u>1</u><u>3</u><u> </u><u>cm </u><u>and </u><u>2</u><u>5</u><u> </u><u>cm</u>
- To find - <u>Area </u><u>of </u><u>trapezium</u>
Refer the figure attached ~
In the given figure ,
AB = 25 cm
BC = AD = 15 cm
CD = 13 cm
<u>Construction</u><u> </u><u>-</u>
Now , we can clearly see that AECD is a parallelogram !
AE = CD = 13 cm
Now ,
Now , In ∆ BCE ,
Now , by Heron's formula
Also ,
<u>Since </u><u>we've </u><u>obtained </u><u>the </u><u>height </u><u>now </u><u>,</u><u> </u><u>we </u><u>can </u><u>easily </u><u>find </u><u>out </u><u>the </u><u>area </u><u>of </u><u>trapezium </u><u>!</u>
hope helpful :D
Answer:
ion know
Step-by-step explanation: