The two elements that produce background radiation on earth are Radon and Uranium. Airborne radon can decay on its own. Radon undergoes alpha decay to produce Polonium. Uranium naturally undergoes alpha decay to produce Thorium.
It would take 147 hours for 320 g of the sample to decay to 2.5 grams from the information provided.
Radioactivity refers to the decay of a nucleus leading to the spontaneous emission of radiation. The half life of a radioactive nucleus refers to the time required for the nucleus to decay to half of its initial amount.
Looking at the table, we can see that the initial mass of radioactive material present is 186 grams, within 21 hours, the radioactive substance decayed to half of its initial mass (93 g). Hence, the half life is 21 hours.
Using the formula;
k = 0.693/t1/2
k = 0.693/21 hours = 0.033 hr-1
Using;
N=Noe^-kt
N = mass of radioactive sample at time t
No = mass of radioactive sample initially present
k = decay constant
t = time taken
Substituting values;
2.5/320= e^- 0.033 t
0.0078 = e^- 0.033 t
ln (0.0078) = 0.033 t
t = ln (0.0078)/-0.033
t = 147 hours
Learn more: brainly.com/question/6111443
To know this you pretty much do have to kind of memorize a few electronegativities. I don't recall ever getting a table of electronegativities on an exam.
From the structure, you have:
I remember the following electronegativities most because they are fairly patterned:
EN
H
=
2.1
EN
C
=
2.5
EN
N
=
3.0
EN
O
=
3.5
EN
F
=
4.0
EN
Cl
=
3.5
Notice how carbon through fluorine go in increments of
~
0.5
. I believe Pauling made it that way when he determined electronegativities in the '30s.
Δ
EN
C
−
Cl
=
1.0
Δ
EN
C
−
H
=
0.4
Δ
EN
C
−
C
=
0.0
Δ
EN
C
−
O
=
1.0
Δ
EN
O
−
H
=
1.4
So naturally, with the greatest electronegativity difference of
4.0
−
2.5
=
1.5
, the
C
−
F
bond is most polar, i.e. that bond's electron distribution is the most drawn towards the more electronegative compound as compared to the rest.
When the electron distribution is polarized and drawn towards a more electronegative atom, the less electronegative atom has to move inwards because its nucleus was previously favorably attracted to the electrons from the other atom.
That means generally, the greater the electronegativity difference between two atoms is, the shorter you can expect the bond to be, insofar as the electronegative atom is the same size as another comparable electronegative atom.
However, examining actual data, we would see that on average, in conditions without other bond polarizations occuring:
r
C
−
Cl
≈
177 pm
r
C
−
C
≈
154 pm
r
C
−
O
≈
143 pm
r
C
−
F
≈
135 pm
r
C
−
H
≈
109 pm
r
O
−
H
≈
96 pm
So it is not necessarily the least electronegativity difference that gives the longest bond.
Therefore, you cannot simply consider electronegativity. Examining the radii of the atoms, you should notice that chlorine is the biggest atom in the compound.
r
Cl
≈
79 pm
r
C
≈
70 pm
r
H
≈
53 pm
r
O
≈
60 pm
So assuming the answer is truly
C
−
C
, what would have to hold true is that:
The
C
−
F
bond polarization makes the carbon more electropositive (which is true).
The now more electropositive carbon wishes to attract bonding pairs from chlorine closer, thereby shortening the
C
−
Cl
bond, and potentially the
C
−
H
bond (which is probably true).
The shortening of the
C
−
Cl
bond is somehow enough to be shorter than the
C
−
C
bond (this is debatable).
The type of bonds present in the compound. and the type of structure it has and the elements that are presents and the number of moles of each element in one mole of the compound.
Answer:
Please see the attachments
Explanation:
Please see the attachments below structures of the 3 isomers of C8H18 that contain 3 methyl branches on the main chain, 2 of which are on the same carbon.