Answer:
a = g = 9.81[m/s^2]
Explanation:
This problem can be solve using the second law of Newton.
We know that the forces acting over the skydiver are only his weight, and it is equal to the product of the mass by the acceleration.
m*g = m*a
where:
g = gravity = 9.81[m/s^2]
a = acceleration [m/s^2]
Note: If the skydiver will be under air resistance forces his acceleration will be different.
<span>Heat from the Sun is transferred to the sand without direct contact. This heat is then transferred to your feet by direct contact.</span>
Answer:
≅3666.67 N
Explanation:
Use Newton's 2nd law, F = ma where F=force applied, m = mass of the object,
a = acceleration acquired by the object.
a= (v-u)/t where v = final velocity, u = initial velocity and t = time taken
calculate a = (30-0)/9 ≅ 3.33 m/s2
Then F = 1100×a = 3666.67 N
Answer: 39.8 μC
Explanation:
The magnitude of the electric field generated by a capacitor is given by:
d is the distance between the plates.
For a capacitor, charge Q = CV where C is the capacitance and V is the voltage.
where A is the area of the plate and ε₀ is the absolute permittivity.
substituting, we get
It is given that the magnitude of the electric field that can exist in the capacitor before air breaks down is, E = 3 × 10⁶ N/C.
radius of the plates of the capacitor, r = 69 cm = 0.69 m
Area of the plates, A = πr² = 1.5 m²
Thus, the maximum charge that can be placed on disks without a spark is:
Q = E×ε₀×A
⇒ Q = 3 × 10⁶ N/C × 8.85 × 10⁻¹² F/m × 1.5 m² = 39.8 × 10⁻⁶ C = 39.8 μC.