Answer:
F = 85696.5 N = 85.69 KN
Explanation:
In this scenario, we apply Newton's Second Law:
where,
F = Upthrust = ?
m = mass of space craft = 5000 kg
g = acceleration due to gravity on surface of Kepler-10b = (1.53)(9.81 m/s²)
g = 15.0093 m/s²
a = acceleration required = 2.13 m/s²
Therefore,
<u>F = 85696.5 N = 85.69 KN</u>
Electromagnetic or magnetic induction is the production of an electromotive force across an electrical conductor in a changing magnetic field. Michael Faraday is generally credited with the discovery of induction in 1831, and James Clerk Maxwell mathematically described it as Faraday's law of induction.
The strength of the gravitational field is given by:
where
G is the gravitational constant
M is the Earth's mass
r is the distance measured from the centre of the planet.
In our problem, we are located at 300 km above the surface. Since the Earth radius is R=6370 km, the distance from the Earth's center is:
And now we can use the previous equation to calculate the field strength at that altitude:
And we can see this value is a bit less than the gravitational strength at the surface, which is
.
Answer:
Explanation:
= Force on one side of the door by first waiter = 257 N
= Force on other side of the door by second waiter
= distance of first force by first waiter from hinge = 0.567 m
= distance of second force by second waiter from hinge = 0.529 m
Since the door does not move. hence the door is in equilibrium
Using equilibrium of torque by force applied by each waiter
It'd be an unbalanced force