You have to use the equation PV=nRT.
P=pressure (in this case 1.89x10^3 kPa which equals 18.35677 atm)
1V=volume (in this case 685L)
n=moles (in this case the unknown)
R=gas constant (0.08206 (L atm)/(mol K))
T=temperature (in this case 621 K)
with the given information you can rewrite the ideal gas law equation as n=PV/RT.
n=(18.35677atm x 685L)/(0.08206atmL/molK x 621K)
n=246.8 moles
A flask with a volume of 125.0 mL contains air with a density of 1.298 g/L. what is the mass of the air contained in the flask<span>The given are: </span>
<span><span>1. </span>Mass = ?</span><span><span /></span>
<span><span>2. </span>Density = 1298 g/L</span>
3. Volume = 125mL to L
a. 125 ml x 0.001l/1ml = 0.125 L
<span>Formula and derivation: </span><span><span>
1. </span>density = mass / volume</span> <span><span>
2. mass </span>= density / volume</span>
<span>Solution for the problem: </span><span><span>
1. mass = </span></span> <span> 1298 g/L / 0.125 L = 10384g
</span>
Answer:
Saffi only
Explanation:
I just took the test and that was the correct answer :)
Stored energy is described as potential energy