Answer:
865.08 m
Explanation:
From the question given above, the following data were obtained:
Initial velocity (u) = 243 m/s
Height (h) of the cliff = 62 m
Horizontal distance (s) =?
Next, we shall determine the time taken for the cannon to get to the ground. This can be obtained as follow:
Height (h) of the cliff = 62 m
Acceleration due to gravity (g) = 9.8 m/s²
Time (t) =?
h = ½gt²
62 = ½ × 9.8 × t²
62 = 4.9 × t²
Divide both side by 4.9
t² = 62/4.9
Take the square root of both side.
t = √(62/4.9)
t = 3.56 s
Finally, we shall determine the horizontal distance travelled by the cannon ball as shown below:
Initial velocity (u) = 243 m/s
Time (t) = 3.56 s
Horizontal distance (s) =?
s = ut
s = 243 × 3.56 s
s = 865.08 m
Thus, the cannon ball will impact the ground 865.08 m from the base of the cliff.
One double bond consists 4 electrons, so 2 double bonds means 8 electrons
Answer:
Waxing crescent to Waxing gibbous
Explanation:
As the Moon goes around Earth and Earth goes around the Sun, the Moon shows us different phases throughout this journey. Also because of peculiar revolution period around the Earth the rise and set time of Moon changes daily. New Moon rises with the Sun rise and sets with Sun set. Waxing half rises in the mid of the day and sets at midnight. Full Moon rises after sunset and sets at sunrise.
The suitable phases will be from waxing crescent to waxing gibbous. The phase of the Moon, 3 days before the full Moon can be selected as the Moon will set by around 2.5 hours before the Sun rise.
Answer: {C} x=15 m right; y=19.9