Answer:
When air resistance equals the weight of an object, the object has reached free fall.
Explanation:
- When an object has only force acting on it as gravity then, it experiences free fall.
- During free fall all the forces except gravity is balanced by one another.
- In the question, object's weight is balanced by air resistance so it is in the state of free fall.
- At the null point of free fall, object experiences weightlessness i.e. it feels like object is not attracted by any force.
Answer:
F = 0.00156[N]
Explanation:
We can solve this problem by using Newton's proposed universal gravitation law.
Where:
F = gravitational force between the moon and Ellen; units [Newtos] or [N]
G = universal gravitational constant = 6.67 * 10^-11 [N^2*m^2/(kg^2)]
m1= Ellen's mass [kg]
m2= Moon's mass [kg]
r = distance from the moon to the earth [meters] or [m].
Data:
G = 6.67 * 10^-11 [N^2*m^2/(kg^2)]
m1 = 47 [kg]
m2 = 7.35 * 10^22 [kg]
r = 3.84 * 10^8 [m]
This force is very small compare with the force exerted by the earth to Ellen's body. That is the reason that her body does not float away.
<span>Metamorphic rock undergoes weathering, erosion; the particles are deposited and undergo lithification.</span>
D. All of the above
At high tide fish will feed among the mangrove roots - rich fishing ground
The trees trap sediment and soil in the river that would flow out to sea which also helps stop erosion
Wildlife utilise almost every part of the tree, with insects and birds, monkeys and lizards in the branches, shrimps and fish in the roots, and snails and clams in the soil