Answer:
R₁ = 14.7 10³ Ω
, R₂ = 8.18 10³ Ω
, R₃ = 1.72 10³ Ω
, R₄ = 5.4 10³ Ω 1/8 W resistor
Explanation:
For this exercise we must use a series circuit since the sum of the voltage on each resin is equal to the source voltage (V = 30 V)
Therefore we build a circuit with 4 resistors in series, in such a way that
V = i R
let the voltage
1st resistance
V = i R
R₁ = V / i
R₁ = 14.7 / 1 10⁻³
R₁ = 14.7 10³ Ω
power is
P = V i
P = 14.7 1 10⁻³
P = 14.7 10⁻³ W = 0.0147 W
a resistance of ⅛ W is indicated
2nd resistance
R₂ = 8.18 / 1 10⁻³
R₂ = 8.18 10³ Ω
Power
P = 8.18 1 10⁻³
P = 0.00818W
a 1/8 W resistor
3rd resistance
this resistance is calculated in such a way that
V₁ + V₂ + V₃ = 24.6
V₃ = 24.6 - V₁ -V₂
V₃ = 24.6 - 14.7 - 8.18
V₃ = 1.72 V
R₃ = 1.72 / 1 10⁻³
R₃ = 1.72 10³ Ω
power
P = Vi
P = 1.72 10⁻³
P = 0.00172 W
a resistance of ⅛ W
To obtain the voltage of 24.6 we use this three resistors together
4th resistance
The value of this resistance is calculated so that the sum of all the voltages reaches the source voltage
30 = V₁ + V₂ + V₃ + V₄
V₄ = 30 - V₁ -V₂ -V₃
V₄ = 30 -14.7 - 8.18 - 1.72
V₄ = 5.4 V
R₄ = 5.4 / 1 10⁻³
R₄ = 5.4 10³ Ω
Power
P = V i
P = 5.4 10⁻³
P = 0.0054 W
⅛ W resistance
The values of these resistance are commercially
Let's check the consumption of the circuit
R_total = R₁ + R₂ + R₃ + R₄
R_total = (14.7 + 8.18 + 1.72 + 5.4) 10³
R_total = 30 10³
the current circulating in the circuit is
i = V / R_total
i = 30/30 10³
i = 1 10⁻³ A
therefore it is within the order requirement.
for connections see attached diagram