Answer:
Explanation:
To solve this problem we use the formula for accelerated motion:
We will take the initial position as our reference () and the downward direction as positive. Since the rock departs from rest we have:
Which means our acceleration would be:
Using our values:
Answer:
In a magnet, the domains all point in the same direction; in an ordinary piece of metal, they're all jumbled up.
Explanation:
In a magnet, the domains all point toward the north pole; in an ordinary piece of metal, they all point to the south pole.
Side note:
Hope this helps!
Please give Brainliest!
To solve the problem, it is necessary to apply the concepts related to the kinematic equations of the description of angular movement.
The angular velocity can be described as
Where,
Final Angular Velocity
Initial Angular velocity
Angular acceleration
t = time
The relation between the tangential acceleration is given as,
where,
r = radius.
PART A ) Using our values and replacing at the previous equation we have that
Replacing the previous equation with our values we have,
The tangential velocity then would be,
Part B) To find the displacement as a function of angular velocity and angular acceleration regardless of time, we would use the equation
Replacing with our values and re-arrange to find
That is equal in revolution to
The linear displacement of the system is,
Answer:
The wavelength of the light is 555 nm.
Explanation:
according to Bragg's law..
n×λ = d×sin(θ)
n is the fringe number
λ is the wavelength of the light
d is the slit separation
θ is the angle the light makes with the normal at the fringe.