T -1,-1 ect ect hope helps
Answer:
2000 L
Step-by-step explanation:
There are 1250 L of water in a tank at present. If the tank is 0.625 full, what is the capacity of the tank?
The simple solution is:
1250 L ÷ 0.625 = 2000 L
The algebraic solution is:
Let <em>c</em> equal the capacity of the tank.
Therefore, <em>c</em> × 0.625 = 1250.
Divide both sides by 0.625:
<em>c</em> × 0.625 ÷ 0.625 = 1250 ÷ 0.625
And simplify:
<em>c</em> = 1250 ÷ 0.625
<em>c</em> = 2000
Suppose the larger pump alone can empty the tank in L hours, and the smaller pump can finish the job in S hours, then each hour the large pump empties 1/L portion of the tank, and the small pump empties 1/S per hour
Working together for three hours, they empty the whole tank, which is 100% of it, so 3/L+3/S=100%=1
Larger pump can empty the tank in 4 hours less than the smaller one, so L=S-4
replace L: 3/(S-4)+3/S=1
Make the denominator the same to solve for:
3S/[S(S-4)] +3(S-4)/[S(S-4)]=1
(3S+3S-12)/[S(S-4)]=1
(3S+3S-12)=[S(S-4)]
S^2-10s+12=0
use the quadratic formula to solve for S
S is about 8.6
The answer is not whole hour.
The answers are:
13. |3y|=9, y<0
14. |x|=2, x>0
Keeping in mind that x = rcos(θ) and y = rsin(θ).
we know the magnitude "r" of U and V, as well as their angle θ, so let's get them in standard position form.