Answer:
K I will attempt
Explanation:
a)
b)
1 : 2 : 2 (I don't know if this is what the question wants but it is what I would answer)
c)
Hydrogen because it requires 2 moles of H2 to react with 1 mole of O2
d)
24 moles of water. Look at stoichiometric coefficient. 2:2 means 24 moles you get 24 moles
e)
Oxygen. 2 < 5/2. Remember, 1 mole of O2 requires 2 moles of H2. But 5/2 is still greater than 2
f)
First, let's find out how many moles of water we can get. Since O2 is the limiting reactant, and O2:H2O ratio is 1:2, we will get 4 moles of H2O. Then, we can multiply 4 by Avogadro's number which is to get the number of molecules. We get: 2.41 * 10^24 molecules of water.
Among the given choices, the right statement is that computers are advantageous because it holds a larger amount of data over graphing calculators. Calculators are easier to transport and has lower power consumption. Answer here is D.
Answer:
The different structures are shown in the attachment.
I and II - structural isomers
I and III - Structural isomers
I and IV - structural isomers
II and III - structural isomers
II and IV - structural isomers
III and IV - stereoisomers
Explanation:
The knowledge of Isomerism is tested here; there are two types of isomerism ; structural and stereoisomerism.
- Structural Isomers have similar molecular and different double bond positioning, these occurs mostly in ALKENE FAMILY.
- Stereo-isomers have the same molecular formular and similar patterns but differ in their spatial arrangement. trans and cis are typical examples of stereo-isomers.
From the question; Relationship between I and II is that they are structural isomers since they have the same molecular formula, but different bond atom arrangement and infact they are the same compound.
- Relationship between I and III is that they are structural isomers with similar molecular formular but differ in the double bond position.
- Relationship between I and IV is that they are structural isomers with similar molecular formula but different double bond arrangement.
- Relationship between II and III is that they are structural isomers with similar molecular formular but different double bond position
- Relationship between II and IV is that they are also structural isomers with the same molecular formular but different double bond position.
- Relationship between III and IV is that they are stereo-isomers with same molecular formula but different spatial arrangement, hence cis and trans.