To determine the time, we can simply do dimensional analysis from the given values. We are given the distance the fluid travels per sec and we are given the required distance to travel. Therefore, we simply divide the required distance with the rate given. It is important to take note with the units.
t = .01 m / .001 m/s = 10 s
Answer:
5.37 × 10⁻⁴ mol/L
Explanation:
<em>A chemist makes 660. mL of magnesium fluoride working solution by adding distilled water to 230. mL of a 0.00154 mol/L stock solution of magnesium fluoride in water. Calculate the concentration of the chemist's working solution. Round your answer to 3 significant digits.</em>
Step 1: Given data
- Initial concentration (C₁): 0.00154 mol/L
- Initial volume (V₁): 230. mL
- Final concentration (C₂): ?
- Final volume (V₂): 660. mL
Step 2: Calculate the concentration of the final solution
We want to prepare a dilute solution from a concentrated one. We can calculate the concentration of the final solution using the dilution rule.
C₁ × V₁ = C₂ × V₂
C₂ = C₁ × V₁ / V₂
C₂ = 0.00154 mol/L × 230. mL / 660. mL = 5.37 × 10⁻⁴ mol/L
Answer: increasing the positive charge of the positively charged object and increasing the negative charge of the negatively charged object.
Explanation:
edge