Answer:
58.0 g of MgO
Explanation:
in a perfect world, 70 g, however we don't live in a perfect world
The equation of reaction
2Mg + O₂ --> 2MgO
first find which element is limiting:
35 g x 1 mol/24.3 g of Mg x 2 mol of MgO/ 2 mole of Mg = 1.44 moles of MgO
35 g x 1 mol/32g of Mg x 2 mol of MgO/ 1 mole of O₂ = 2.1875 moles of MgO
This means Mg is the limiting factor, so you will be using this moles to find grams of MgO
1.44 mols of MgO x 40.3 g of MgO/ 1 mol = 58.0 g of MgO
Answer:
since the gravitational force is directly proportional to the mass of both interacting objects, more massive objects will attract each other with a greater gravitational force. So as the mass of either object increases, the force of gravitational attraction between them also increases.
Explanation:
Answer:
10.85 g of water
Explanation:
First we write the balanced chemical equation
Then we calculate the number of moles of nitric acid produced
n(HNO3) =
According to the balanced equation, water needed in moles is always half the number of moles of HNO3 produced. So since we will produce 1.2044 mol of HNO3, we will need 0.6022 mol of water. Now to calculate what mass that is:
mass(water)=number of moles*molar mass=0.6022mol*18.02g/mol=10.85g
Answer:
Yes
Explanation:
A molecule has a center of symmetry when, for any atom in the molecule, an identical atom exists diametrically opposite this center an equal distance from it(Wikipedia).
A center of symmetry is said to exist in a molecule when reflection of all parts of the molecule through the center of symmetry produces an indistinguishable configuration(Housecroeft and Sharpe,2012)
Obviously, the Cl2 molecule has a center of symmetry, hence it is symmetrical. Reflection of the molecules through its center of symmetry produces an indistinguishable configuration.